
Technical Reprt)
CMW/SEi-93-TR-26
ESC-TR-M200
g~ M~ i e r3

-~ Software Engineering Institute

AD-A277 289

Case Studies of Software Process
improvement Methods

Daniel J. Paulish

December ;1993 *

D13GS CT

94-08935

Careg Meolln University does not discriminate and Carnegie Melon University is reQuired not to discriminate in adrrrlssc"m, eriploymend or adminstration
of its programs on the basis of race. color. national origin. sex or handiap in violation of Title VI of.the Civil Rights Act of 1964. Title IX of the Educational
Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state or local laws. or executive orders.

In addition. Carnegie MeOn University does not discriminate in admission, employment or administration of its programs .'i "he basis of religion, creed.
ancestry, belIef, age. veteran status. sexual orientation or in violation of federal, state or local laws. or executive orders. While the federal government does
contirue to exclude gaya lesibians and bisexuals from receMng ROTC scholaraqms or serving i te military, ROTC classes on this campus are available to
all students.
nqri concerning applicatin of these statements should be directed to the Provost. Carnegie Melon Uniersity. 5000 Forbes Avenue. Pittsburgh, Pa

15213. 1telehone (412 266-• 6 at f Vice President tor Enrollment, Carnegie Mellon Univert. 5000 Forbes Avenue, Pittsburgh, Pa. 15213. elphone
(412) 268-20W.

Technical Report
CMU/SEI-93-TR-26

ESC-TR-93-200
December 1993

Case Studies of Software Process
Improvement Methods

Daniel J. Paulish

Resident Affiliate,
Siemens Corporate Research, Inc.

Accesion For

NTIS CRA&M
bTIC TAB
Unannounced 0
Justification-

By
Dist. ibution I

Availability Codes

Avail and I or
Dist Special

Approved for public relas.
Distrbution unlimited.

Software Engineering Institute
Carnegie Melon Universty

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscon: AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official
DoD position. It Is published in the interest of scientific and technical
Information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded 4qy the U.S. Department of Delense.
Copyight 0193 M by Caugie Mellon Universiy.

This documeyt is aail- Ihvough tie Defense Tecmhical Imiaion Center. DTIC Wpvides access to and ndser of
uienifc a•d technial inlfonian for DoD pernonnel. Do h agn aid potnWl oenutars, and oer U.S. Govem nt

ypersonnel andhe 'ir contlarrs. To obtain a cpy, please caontd DTIC irecy: Delense Technical Inlormation
Ann: FORA, Cameron Sakton. Alexando,. VA 223044145.

Copies of Oift document ae also available hrough ti Nationl Tedcnical in•fmation Service. For inbrnmlion on olduing,plNese cmft NTIS drecly: National Technical hInomon Service U.S. Depumient of Commerce, Spnge VA 22161.
Copies ao V* docwunt re also available from Research Access, Inc., 800 Viial Street, Pittsburgh, PA 15212, Telephone:
(412) 321-2992 or 1-800-6856510, Fax: (412) 321-2994.

Use of any trademarks in this report is not intnded in any way to infringe on the rigft of the 1rademark holder

Table of Contents

Introduction 1
1.1 Project Background 1
1.2 Scope of Report 2
1.3 Need for Process Improvement 3
1.4 What Is a Process Improvement Method? 5

2 Case Studies Approach 9
2.1 Introduction 9
2.2 Site Selection 10
2.3 Interview and Data Collection Approach 10
2.4 Information Protection 12
2.5 Required Investment 12
2.6 Benefits to Siemens Development Organizations 13

3 Case Studies Description 15
3.1 Siemens Private Communication Systems (PN) 15
3.2 Siemens Automation (AUT) 18
3.3 Siemens Nixdorf Informationssysteme (SNI) 18
3.4 Siemens Stromberg-Carlson (SSC) 19
3.5 Siemens Industrial Automation (SIA) 20
3.6 Electromedical Group (SME) of Siemens Medical Systems 21
3.7 Siemens Gammasonics (SGI) - PACS 21
3.8 Angiography (ANG) Group of Siemens Medical Systems 22
3.9 Nuclear Medicine (NUC) Group of Siemens Medical Systems 22

4 Performance Measures for Software Development Organizations 23
4.1 Introduction 23
4.2 Data Collection and Analysis 23
4.3 Primary Data 24
4.4 Environmental Data 27
4.5 Performance Measures 29
4.6 Observing Trends in Performance 30

4.6.1 Defect Trends 31
4.6.2 Productivity Trends 31
4.6.3 Schedule Trends 31
4.6.4 Process Improvement Goals 32
4.6.5 Return on Investment 32

4.7 Performance Measures Conclusion 33

5 Baseline Performence Data 35
5.1 Data Collection 35

CMUsEI-oS-TR-26

5.2 Data Analysis 35
5.3 Initial Data 36

6 Guidelines for Selecting Process Improvement Methods 39
6.1 Establish Improvement Goals 39
6.2 Identify Improvement Key Process Areas 40
6.3 Select Process Improvement Methods 42
6.4 Establish Responsibility 43
6.5 Communicate the Process Improvement Plan 43
6.6 Train 43
6.7 Define Progress Tracking Measures 44
6.8 Implement the Process Improvement Methods 44
6.9 Collect and Analyze Tracking Data 45
6.10 Adjust the Process Improvement Plan 45

7 Common Implementation Problems and Introduction Hints 47

8 Conclusions and Recommendations 49

9 References 53

CMU/SEI-93-TR-26

List of Figures

Figure 1-1 Process Improvement Approach 4

Figure 1-2 Which Software Process Improvement Methods? 5

Figure 2-1 Case Studies Approach 9

Figure 4-1 Generalized Process Phases 26

Figure 4-2 Software Quality Determinants 27

Figure 6-1 Key Process Areas 42

Figure 6-2 Technology Adoption Curve 45

CWRUE4PTR-26 a

List of Tables

Table 1: Site Raw Data 16

Table 2: Case Study Site Characteristics 17

Table 3: Software Process Improvement Methods 17

Table 4: Primary Data 25

Table 5: Environmental Data 28

Table 6: Organization Performance Measures 29

Table 7: Summary of Process Improvement Goals 32

Table 8: Primary Data - Summary 37

Table 9: Environmental Data - Summary 37

Table 10: Organization Performance Measures - Summary 38

Table 11: Software Process Improvement Methods 41

Table 12: Example Matrix of Criteria for Selecting Process Improvement
Methods 44

Table 13: Implementation Issues Summary 50

Iv cMU/CEI-gS-TFI-26

Preface

This report is an output of a joint Software Engineering Institute (SEI)/Siemens project
in which Siemens software development organizations are being used as case study
sites to measure and observe the impact of methods used to Improve the software de-
velopment process. The objective of the project is to quantify and better understand
the more widely practiced methods used by industrial organizations to improve their
software development processes.

The report is intended for software engineering managers and practitioners who are
interested in improving their software development process. In this report, the author
assumes that the reader has general knowledge of the structure and content of the SEI
Capability Maturity Model for Software (CMM). If you are not familiar with the CMM,
please refer to [Paulk 93J.

The report describes the approach used for the case studies. It defines a number of
basic measures to help organizations track the improvement in software development
performance as the software development process is improved. The report contains
the results and observations made for the Siemens software development organiza-
tions that were studied, and also contains a number of suggestions for improving the
software development process based upon observation of the methods applied at the
case study organizations.

CMU/SEI-O3-TR-28 v

VI cMt&IsEI-os-TR-26

Case Studies of Software Process Improvement Methods

Abstract: This. aport describes the case studies approach applied at a
number of Siemens software development organizations to observe the
impact of software process improvement methods. In addition, the
report provides guidance to software development organizations that
want to improve their processes. A set of organization performance
measures are defined to help an organization observe its software
process improvement over time. An approach is given for selecting
software process improvement methods. The report concludes with a
description of common implementation problems, and recommen-
dations for organizations to improve their software processes.

I Introduction

1.1 Project Background

In 1992 a joint project was initiated between the Software Engineering Institute (SEI)
and Siemens to investigate the impact of software process improvement methods.
There were two problem questions that motivated the project:

* How does one measure the result of software process improvement
methods?

* How should an organization select methods for software process
improvement?

A joint SEI/Siemens project on measuring software process improvement methods
was initiated to integrate the methods developed at the SEI with actual practices used
within Siemens software development organizations. This report is an output of this
joint project. The project will identify specific process improvement methods that can
be tailored to the current maturity level of the organization that wishes to improve. This
project will also provide practical suggestions concerning the implementation and im-
pact of process improvement methods in order to provide the foundation for continu-
ous process improvement.

The goals of the SEI in this collaboration were:

* To obtain access to software engineering practices of industrial
software development organizations in Siemens companies.

CMU/SEI-93-TR-26 1

"* To obtain methods for conducting case studies for SEI validation
efforts.

"* To gain access to Siemens process measurement research,
standards, and practices.

The goals of Siemens Corporate Research in this collaboration were:

"* To obtain access to SEI software process improvement methods and
technology.

"* To benefit from SEI's technology transfer mechanisms.

"* To benefit from SEI's staff expertise and relationships as a technology
center for software engineering process.

It is widely believed that an improved software development process results in higher
quality products, which ultimately increases the ability of an industrial organization to
compete in a competitive marketplace. The case studies described herein provide an
opportunity to observe the practice and impact of methods for improving the software
development process. It is the hypothesis of this project that the application of soft-
ware process improvement methods will have a positive impact on the performance of
a software development organization, as observed by relative results such as in-
creased product quality and productivity, reduced schedule cycle times, improved mo-
rale, etc.

1.2 Scope of Report

This report describes a limited number of process improvement methods that have
been commonly applied within industrial software development organizations, i.e.,
within the selected case study sites. All possible improvement methods cannot be ad-
equately described herein; however, a subset of commonly applied methods has been
described to give software engineering managers some background and guidance on
methods that have been successfully applied in other organizations. The report sum-
marizes lessons learned from organizations that have implemented these methods.

The software process improvement methods described have been selected from ap-
plication within the Siemens case study sites. Because of the diversity of application
domain, organization size, maturity level, location, etc., of the Siemens sites, it is be-
lieved that this report gives a reasonable description of current industrial practice. The
case study approach has also been designed and described so that it could be applied
to other industrial organizations.

2 CMU/SEI-E3-TR-26

It is anticipated that this report is the first of a series of reports covering Siemens ex-
perience implementing software process improvement methods. Future technical re-
ports will report best practices from which others can learn. In addition, common
barriers to overcome and observed methods for overcoming these barriers will be doc-
umented and summarized without identification of specific organizations.

1.3 Need for Process Improvement

The motivation to improve a software process usually results from a business need
such as strong competition, increased profitability, or external regulation. Approaches
to improve a software development process, such as those shown in Figure 1-1, are
often initiated by an assessment of the current practices and maturity. A number of im-
provement methods are then recommended and implemented. The selection and suc-
cessful implementation of the improvement methods are dependent on many
variables such as the current process maturity, skills base, organization, and business
issues such as cost, risk, implementation speed, etc. Measuring the impact and pre-
dicting the success of a specific improvement method are difficult. This is often due to
environmental variables external to the method such as staff skills, acceptance, train-
ing effectiveness, and implementation efficiency. Once the improvement method is in
place, there is also the question of what to do next. It is necessary to determine wheth-
er the method was implemented successfully, whether the process is mature enough
to consider implementing additional methods, or whether the selected method is ap-
propriate for use within the current process maturity level and environment.

CMU/SEI-93-TR-26 3

Business Need

Motivation to Imnpro*ve

Inirovemneti Methods hnplemsnton

Metrics Measure-- , pac

Figure 1-1. Process Improvement Approach

Many software engineering organizations today want to improve their software devel-
opment process as a way of improving product quality and development team produc-
tivity, and reducing product development cycle time, thereby increasing business
competitiveness and profitability. Although many organizations are motivated to im-
prove, few know how best to improve their development process. There is a wide as-
sortment of available methods such as TOM (total quality management), QFD (quality
function deployment), FPA (function point analysis), DPP (defect prevention process),
SWQA (software quality assurance), CM (configuration management), SRE (software
reliability engineering), etc. This often creates confusion for software engineering
managers with respect to which methods should be introduced at which points within
their process evolution as shown in Figure 1-2.

4 CML/SEI-03-TR-26

ý Measurement
TOMFormal Inspection Testing

Design Methodology JAD
FPA

AssessmentDPP SWQA QFD

CM oop
CA E oosPM OO P

CASE Tools PConcurrent Engineering

Cost Estimation
Cleanroom SW Engineering

Figure 1-2. Which Software Process Improvement Methods?

1.4 What Is . -i ,cess Improvement Method?
A software process improvement method is defined as an integrated collection of pro-
cedures, tools, and training for the purpose of increasing product quality or develop-
ment team productivity, or reducing development time. A software process
improvement method can be used to support the implementation of a key process area
(KPA) of the Capability Maturity Model (CMM) or to improve the effectiveness of key
practices within a KPA.

Some example results of an improved software development process could include:

"* Fewer product defects found by customers.

"* Earlier identification and correction of defects.

"* Fewer defects Introduced during the development process.

CMULSEI[3-TR-26 5

"* Faster time to market.

"* Better predictability of project schedules and resources.

Software process improvement methods often require significant training and effort to
introduce for application within a software development organization. Thus an orga-
nization must usually invest significant resources to introduce a process improvement
method. In addition, there may often be barriers to adoption which an organization
must overcome before one can observe a measurable impact resulting from the im-
proved software process.

Some example software process improvement methods are summarized below.

"* Estimation: This collection of methods uses models and tools to
predict characteristics of a software project such as schedule and
personnel needs before the project begins.

"* ISO 9000 certification: ISO 9000 is a series of quality standards
established by the International Standards Organization (ISO) for
certifying that an organization's practices meet an acceptable level of
quality control.

"* Software process assessment (SPA): Assessment methods are a
means of determining the strengths and weaknesses of an
organization's software development process. Results include a
"maturity rating," and findings of potential areas for improvement which
are often implemented by a software engineering process group
(SEPG).

"* Process definition: These methods refer to the practice of formally
specifying or modeling the software development process in a way that
allows communication and analysis through its representation.

"* Formal inspection: This method, pioneered by Michael Fagan at IBM
in the 1970s, provides a technique to conduct review meetings to
identify defects for subsequent correction within code or other
documents.

* Software measurement and metrics: This collection of methods
provides mechanisms for defining, tracking, and analyzing measures
which can be used for controlling and improving the software
development process.

6 CMU/SEI-93-TR-26

* Computer aided software engineering (CASE): This collection of
methods uses software tools for automating the software development
process, particularly in the areas of design and analysis.

"* Interdisciplinary group methods (IGMs): This collection of methods
refers to various forms of planned interaction between people of
diverse expertise and functional responsibilities who are working
together as a team toward the completion of a software system.
Example methods include nominal group technique (NGT), joint
application design (JAD), groupware, group decision support systems
(GDSSs), quality circles (OCs), and concurrent or simultaneous
engineering.

"* Software reliability engineering (SRE): SRE is a collection of methods
using models for statistically predicting failure rates of a software
system before it is released.

"* Quality function deployment (QFD): This method is used to assist in
defining software functional requirements that can best meet customer
needs, distinguish resulting products from those of competitors, and
consider implementation difficulty.

"• Total quality management (TOM): This collection of methods is
oriented towards improving the quality culture of the organization,
including assistance to define, improve, and track goals.

"* Defect prevention process (DPP): This method, pioneered at IBM in
the 1980s, assists in categorizing defects so they can be
systematically removed and avoided in future software development
products and activities.

"* Cleanroom software development Cleanroom is a software
production method which originated in the Federal Systems Division of
IBM in the late 1970s and early 1980s. Cleanroom combines practices
of formal specification, nonexecution-based program development,
incremental development, and independent statistical testing.

CMU/5EI4S-TR-26 7

a CMLU/SEI493-TR-26

2 Case Studies Approach

2.1 Introduction
This section discusses the approach taken to select, interview, and collect data from
the Siemens case study sites. It also addresses some of the issues and concerns as-
sociated with participation in this project, such as information protection, required in-
vestment, and benefits to the Siemens development organizations.

Figure 2-1 summarizes the approach used for the case studies. A project overview
and Initial interview were conducted at the sites in November-December, 1992. The
measurement baseline was established for some of the sites during March-April,
1993. Follow-up interviews were conducted at the sites during July-August, 1993.
The sites will continue to be measured and observed for the next few years with mea-
surement data collected and interviews conducted at least annually.

Project Overview &
Initial Interview

HI

Measurement Baselinel

JFollow-Up Interviews Conclusions &

& Measurement " Observations

Figure 2-1. Case Studies Approach

CMUSE"-93-1R-26 9

2.2 Site Selection

A number of Siemens software development organizations were selected as case
study sites to investigate the impact of selected process improvement methods. A
limited number of basic measurements were made to capture the current performance
of the development organization with respect to development team productivity, pro-
cess maturity, and product quality. The selection criteria for Siemens case study site
locations are summarized below:

"* Siemens software development organizations were selected to obtain
a large variance of application domains, size, product complexity, etc.,
for the case study.

"* Organizations were selected in multiple countries, specifically the USA
and Germany.

* Organizations were selected in which the author had personal
contacts, either established from prior projects, or through contacts
made through the corporate software process improvement
competence center.

* Organizations were selected that were relatively dedicated to and had
an interest in software process improvement.

A number of process improvement methods were selected by the case study site or-
ganizations for implementation within the software development organization. The
methods were chosen based on the current maturity level, skills base, organization
structure, and business issues for each organization. Each development organization
has been visited twice, and they will be revisited approximately annually, at which time
the basic measurements will be recalculated. This will provide some quantitative data
concerning the impact of the selected process improvement methods. In addition, les-
sons learned from the implementation and impact of the process improvement meth-
ods have been and will be captured and documented. In particular, observations
concerning the use of the methods have been and will be captured including soft fac-
tors such as the impact on staff morale, quality culture, motivation, etc.

2.3 Interview and Data Collection Approach

The data for the case study investigation are collected from site interviews and docu-
mentation supplied by the case study site. Each initial site visit consisted of an over-
view of the project (approximately 1 hour), and then an interview which required from
1-2 hours depending on the amount of discussion. The questions used to guide the
initial interviews are given below.

10 CMU/SEI-93-TR-26

Practices/Process/Environment:

1. What types of products are developed here?
2. How many people here are involved with software product development?
3. What size are the developed products?
4. How long does it take to develop a new release?
5. Can you describe your current company quality culture?

Improvement Methods:

6. What methods have you used to improve your software process?
7. What methods are you planning to use to improve your software process?
8. How will you introduce the selected software process improvement methods?
9. What problems are you anticipating in improving your process?
10. How much will you invest in software process improvement?

Performance Measurements:

11. Has an assessment been made of your software process?
12. What is your current maturity level?
13. What is your current product quality?
14. What is your current productivity?

A few months after the initial interview, each site was asked to perform a measurement
baseline in order to determine the current performance of the organization. The data
requested are described in Chapter 4 of this report. These data were viewed as con-
fidential by all the organizations, and in some cases the data were considered to be
too sensitive for discussion external to the organization. No attempt was made to com-
pare or contrast data across the organizations for the purpose of comparing organiza-
tional performance. The degree of difficulty that each organization experienced in
generating the performance data varied considerably depending on the maturity level
and degree of application of quantitative measurement approaches used within their
development process.

Follow-up interviews have been and will be conducted with the organizations, and
measurement data will be collected and updated in order to observe the Impact of pro-
cess improvement over time. We anticipate that the organizations will need to be ob-
served over a period of four to five years in order to see an improvement in
performance data. This is a consequence of the relatively long product development
cycle times. Performance is normally calculated for a project or product release, such
that the trend of data can only be observed by successive releases over time. Inter-
views will be conducted on roughly an annual interval depending on availability of staff
and frequency of interaction.

CMUnEHIO-TIR-26 11

The data collected from a case study site will often be for a recent project or projects
for which some field dcoect rate data have been collected for one year. Thus, the term
site does not imply a strict physical location. In some locations, multiple projects may
be reported, while some projects may be managed over multiple physical sites often
within multiple countries.

2.4 Information Protection

Information discussed and reported in the case studies is being protected in accor-
dance with the desires of the case study organization. The most desirable approach
is for an open discussion of lessons learned and results using the existing Siemens
procedures for review and release of external data. However, some organizations may
wish to withhold actual measurement data by normalizing the results. For example, an
organization could report that their field defect density was X defects/KLOC before im-
plementing formal inspections, and after one year of implementing formal inspections
the field density decreased to O.3X defects/KLOC. In addition, some organizations
may wish to withhold their company identity. In some cases, organizations are willing
to discuss the lessons learned with introducing specific process improvement meth-
ods, but they view their performance data as confidential and not to be discussed out-
side their organization.

2.5 Required Investment

The case studies are designed to be as noninvasive as possible respecting the limited
staff time available within any product development organization. Each case study or-
ganization requires a point-of-contact. Interviews are conducted with the point-of-con-
tact and any other key staff members necessary to gather the measurement data and
describe current process, practices, improvement methods selected, and lessons
learned. In addition, the case study organization must review the case study descrip-
tion reports for external release.

It is also suggested by the author, but not required for this project, that the case study
organization consider undergoing an SEI software process assessment (SPA) [Hum-
phrey 89] as a proven technique for identifying software process improvement activi-
ties. The Investment required to conduct an SEI assessment can be substantial
depending on the size of the organization and the approach selected. In general, a
one-week on-site evaluation is necessary using a dedicated assessment team which
would conduct interviews with a representative set of project leaders and practitioners.
The output of the assessment would include not only a determination of the current
process maturity, but more importantly, a set of recommendations for process im-
provement.

12 CMU/SEI..3-TR-26

2.6 Benefits to Siemens Development Organizations

The benefits to a Siemens development organization of participating as a case study
site for the SEI/Siemens joint project are summarized below.

" Transferring SEI technology: The project will provide the Siemens
development organization with better access to SEI technology. The
SEI's mission is to provide leadership in advancing the state of the
practice of software engineering to improve the quality of systems that
depend on software.

"* Generating positive publicity: It is intended that the case studies
material will be published and promoted for other organizations to
learn from experience. Publication ;f the case studies will enhance the
reputation of the Siemens organizations described.

"* Consulting: Informal consulting on process improvement will be
provided to the case studies organizations. This consulting could
range from answering questions to training, especially in the area of
software measurement.

"* Supporting process improvement and sharing best practices: The
Siemens case study organizations will have the opportunity to learn
what is being done in other parts of Siemens in the U.S. and Germany
to improve the software development process.

CMULSEI-93-TR-26 13

14 CMUI/SEI-O3-TR-26

3 Case Studies Description

Ten potential Siemens case study sites have been identified, visited, and interviewed.
The sites exhibit a high degree of diversity with respect to product application, staff
size, maturity level, etc. The sites are located in both the U.S. and Germany, which
provides the opportunity to observe the effect of cultural variables upon the software
development organization. A two-tier approach has been taken with the sites concern-
ing the degree of interaction and observation. The majority of organizations will require
minimal interaction primarily through the scheduled interviews and occasional tele-
phone follow-up. Two organizations have been identified as candidates for extensive
observation. The Electromedical Group (SME) of Siemens Medical Systems in Dan-
vers, Mass. is planning a software quality initiative which will result in the development
of a number of planned actions for software process improvement. Siemens Private
Communication Systems (PN) is planning a new product release which will involve
multinational teams residing in Munich and at two locations in the U.S. Project man-
agement has expressed an interest in working closely with the SEI project since the
product release planning and implementation will also address process improvement
methods. In addition, a corporate thrust has been initiated to investigate methods for
improving overall product development efficiency.

The diversity of the case study sites can be observed from the raw data summarized
in Table 1, the site characteristics in Table 2, and the software process improvement
methods used in Table 3. Note that no conclusions can be made from these tables
since multiple products, projects, and releases are usually being worked on simulta-
neously by the software staff. Brief summaries of the selected software development
organizations are given below.

3.1 Siemens Private Communication Systems (PN)

Siemens Private Communication Systems designs, develops, and sells communica-
tion systems throughout the world. These systems are known as telephone switching
systems, private telephone exchanges, and private branch exchanges (PBX). The Si-
emens products are called HICOMTm systems. This Siemens business is made up of
approximately 26,000 employees. Nearly 700,000 systems have been installed for
400,000 customers worldwide.

Approximately 800 employees in Europe are involved with software development.
New software versions, depending on the application, typically take 1-2 years to de-
velop. The product sizes are approximately 1-4 MLOC, and represent an investment
of 100-300 staff-years to develop. Most of the code is written in CHILL, and a large
part of it is shared among the various versions within a product line.

CMULSEI-43-TR-26 15

In addition to Europe, distribution and development activities in the United States are
substantial having resulted from the acquisition of Rolm from IBM. Major software de-
velopment centers are located in Munich, Germany; Santa Clara, California; and Boca
Raton, Florida.

PN has invested in the software process methods of formal inspection, measurement,
and project management training. It is particularly interested in implementing multi-
national, twenty-four hour product development exploiting the existence of its multiple-
site development centers located in different time zones-particularly Germany, Flor-
ida, and California. Towards this goal PN has already implemented its development
computing facilities so that they can be shared among multiple development locations.

Table 1: Site Raw Data

Organization Location Software Staff Product Size Schedule

Size (LOC) (Mos.)

6N 6'V Munich 1600 5M 27

PN Munich 800 4M 30

AUT Erlangen 250 300-600K 8-12

SNI Munich 1200 3M 24-26

SSC Boca Raton, FL 500 3.7M 25-27

SIA Johnson City, 45 600K 14-24
TN

SME Danvers, MA 75 150K 18

SGI-PACS Hoffman 65 332K 6-8
Estates, IL

ANG Hoffman 25 234K 18-19
Estates, IL

NUC Hoffman 30 423K 30-36
Estates, IL

16 CMU/SEI-93-TR-26

Table 2: Case Study Site Characteristics

Characteristic Range

Staff size 25-1600

Product size 150 KLOC-5 MLOC

Schedule cycle time 6-36 months

Maturity level 1-4

Software process improvement methods ISO 9000-DPP
used Most widely used methods: formal

inspection, measurement, ISO 9000

Table 3: Software Process Improvement Methods

Org. Location Software Process Improvement Methods Used

6N 6V Munich Inspection, measurement, process training, assessment

PN Munich Inspection, measurement, multinational development

AUT Erlangen Inspection, measurement

SNI Munich Inspection, CASE, DPP

SSC Boca Inspection, measurement, TQM, ISO 9000
Raton, FL

SIA Johnson SEPG, CASE, measurement, ISO 9000
City, TN

SME Danvers, Inspection, measurement, process definition
MA

SGI-PACS Hoffman Process definition, assessment, ISO 9000
Estates, IL

ANG Hoffman QFD, assessment, ISO 9000
Estates, IL

NUC Hoffman Process definition, assessment, ISO 9000
Estates, IL

CMULSEI43-TR.26 17

3.2 Siemens Automation (AUT)

Siemens Automation develops factory automation systems products for applications
such as computer integrated manufacturing (CIM). Approximately 20,000 people are
employed worldwide by this Siemens business. The business headquarters is locat-
ed in N~mberg, Germany, with larger facilities also located in France, Austria, India,
and the United States.

The specific site selected for the case study is located in Erlangen, Germany. The
types of products that are developed are automation systems for machine tools and
robots. The software development activities can be described as the development of
embedded real-time systems. The software is typically written in C, C++, and Assem-
bler on PC-based workstations, and then embedded as PROM-based software within
microprocessor-controlled products.

This organization initiated the use of metrics using the PYRAMID seven-step metrics
introduction program approach in 1991 [Mdller 93]. After application to the pilot project
organization (for approximately six months), the metrics program was revised based
upon the pilot experience, and then implemented throughout this organization. The
organization has also trained its staff on the use of formal inspections.

3.3 Siemens Nixdorf Informationssysteme (SNI)
This site, located in Munich, is responsible for systems software development within
Siemens Nixdorf Informationssysteme (SNI). SNI was formed in October, 1990 by
the merger of the Data and Information Systems Group of Siemens AG and Nixdorf
AG. This organization has possibly one of the most mature software development pro-
cesses within Siemens. For example, it is believed that this group's application of soft-
ware measurement may be one of the earliest applications of this software process
improvement method found in Europe.

Systems software refers to software that is developed for controlling the utilization of
general-purpose computer systems. It includes software such as operating systems,
computer language compilers, database management software, utilities, and data
communications software. The primary operating systems developed and maintained
are BS2000Tm, which is an operating system that runs on Siemens mainframes, and
SINIXrm, which is a Siemens supported version of the UNIXTM operating system.

The software products developed range in size from approximately 10,000 lines of
code for small utility applications to more than 3 million lines of code for a complex op-
erating system. Computer languages that are primarily used are C, SPL, and Assem-
bler.

18 CMU/SEI-93-TR-26

There are approximately 3,000 software engineers and support specialists involved in
developing and maintaining these system software products. Many of the developers
are located in the Munich and Paderbom areas in Germany, although there are devel-
opment centers located around the world. Some of the larger satellite development
centers in Europe are located in Namur, Belgium and Vienna, Austria. The case study
will focus on the activities of the approximately 1,200 software developers in Munich.
This group has recently completed a pilot project on defect prevention process (DPP),
which when generally implemented, could meet some of the characteristics of a CMM
level 5 organization.

SNI has also substantially invested in computer aided software engineering (CASE)
tools and training over the past few years. It has implemented an extensive training
program on formal inspections. This organization has observed a reduction in half of
field defect rates within the last three years, which is believed to have resulted prima-
rily from the application of formal inspections.

3.4 Siemens Stromberg-Carlson (SSC)

Siemens Stromberg-Carlson provides telephone operating companies with advanced,
high-quality public telecommunications networks. The company designs, develops
and manufactures central office digital switching systems, cell switching systems,
packet switching systems and transmission equipment. The case study site will ob-
serve the practices of the EWSDTm product development group located in Boca Raton,
Florida consisting of about 500 staff members involved with software development.
The case study site does not include the development activities located in Lake Mary,
Florida. Siemens Stromberg-Carlson develops its switches for the U.S. market reus-
ing much of the base code developed at ON OV Munich. Features required for the U.S.
market are then added, integrated, tested, and maintained.

SSC has recently implemented a metrics program, and they have trained all staff
members on Crosby quality methods and formal inspections. The metrics program in-
cludes periodic publishing of a metrics newsletter and on-line access to the measure-
ment data. This organization has reached a process maturity level such that it is now
considering implementing a pilot defect prevention process (DPP) project. SSC is also
planning for ISO 9000 certification. There is substantial management support for pro-
cess improvement, and SSC staff have been attending training on a number of soft-
ware process improvement methods which are also being considered for implementa-
tion.

CMU/SEI-3-TR-28 19

3.5 Siemens Industrial Automation (SIA)

Siemens Industrial Automation develops programmable controllers for factory auto-
mation systems. The company, consisting of about 1,100 employees, was formed in
late 1991 as a result of Siemens acquisition of the Industrial Controls Division of Texas
Instruments in Johnson City, Tenn. The case study involves only one engineering de-
partment consisting of about 45 developers. These developers are developing rela-
tively sophisticated products involved with a CASE tool for process control application
programming (APT'r), and supervisory control and data acquisition monitoring sys-
tems (TISTARTm).

The specific development department being used for the case study has a relatively
sophisticated small team development process. The department manager and point-
of-contact for the case study is a member of the SIA Management Steering Committee
on Process Improvement. SIA has initiated activities for process improvement such
as forming a software engineering process group (SEPG), using CASE tools, training
staff in formal inspection, and implementing measurement. SIA has recently obtained
ISO 9000 certification.

20 CMU/SEI-93-TR-26

3.6 Electromedlcal Group (SME) of Siemens Medical Systems

The Electromedical Group (SME) of Siemens Medical Systems designs, develops,
and manufactures patient-monitoring systems for use in hospitals throughout the
world. The patient-monitoring products are typically used in intensive care units, car-
diac care units, and operating rooms within hospitals.

Development teams are currently developing patient-monitoring products depending
on the application of the device in the hospital (e.g., bedside monitors, central nurses'
station, recorders, and displays). The devices utilize microprocessor-based hardware
platforms using Motorola and Intel processors, and they utilize real-time operating sys-
tems. The devices are connected within the hospital for real-time data collection and
distribution using local area networks.

The code is written primarily in C with some assembly language code for time-critical
applications. The software development environments used include Sun Microsys-
tems workstations, personal computers, and VAX/T minicomputers running SunOSTM,
MSDOS Tm, and VMS Tm respectively.

High quality code is required to provide customer satisfaction and to ensure patient
safety. To increase software quality, the organization has emphasized development
methodology with carefully controlled specifications and reviews, better testing proce-
dures and tools, and the use of quality metrics to measure progress. The products de-
veloped and production process techniques utilized are regulated by the U.S. Food
and Drug Administration.

This organization is currently focused on process definition, formal inspection training,
estimation, and measurement.

3.7 Siemens Gammasonics (SGI) - PACS

This SGI Division is invlvad with developing picture archiving and communications
systems (PACS) for hompitals. Siemens PACS is a comprehensive digital information
system integrating a wide spectrum of digital and analog modalities. These systems
are used in order to streamline radiology operations within a hospital by introducing
electronic image acquisition, transmission, storage, retrieval, and display capabilities.

This software organization has undergone a very rapid buildup of staff over the past
few years with another twelve members to be added this fiscal year. This has resulted
in a small project process which may be difficult to scale up to a larger organization.
This coupled with the fact that the product is new and not yet in a maintenancu mode,
indicates an organization in transition. Their plan is to better document their current
development process, and then use this material for training new and existing staff on

CMUI/SEI-93-TR-26 21

the characteristics and requirements of their process. An SEI style software process
assessment was conducted in June, 1993. PACS is also planning for ISO 9000 certi-
fication.

3.8 Angiography (ANG) Group of Siemens Medical Systems

This group is involved with developing products for blood vessel imaging. The prod-
ucts are sold under the name HicorTm. Using low invasion techniques, these systems
provide physicians with information necessary to diagnose and to plan therapies that
circumvent surgery. They provide real-time images for monitoring of medical diagnos-
tic and therapeutic angiography procedures such as angioplasty.

This organization exhibits a stable environment with staff that has in many cases
worked together for a long time. The average staff age is greater than the other divi-
sions in SGI, and there is a high degree of confidence concerning both process and
performance. The business environment is considered stable and successful.

It was suggested that the organization could achieve higher levels of the CMM through
more effective utilization of their measurement data for in-process measurement and
control. An SEI style software process assessment was conducted during August,
1993. ANG applied quality function deployment (QFD) during the definition of system
functional requirements for its most recent major product development. ANG is also
planning for ISO 9000 certification.

3.9 Nuclear Medicine (NUC) Group of Siemens Medical Systems

This group develops nuclear medicine systems consisting of gamma cameras and
computers. These systems provide whole body and organ specific imaging capability.
This organization exhibits many of the business pressures observed at other case
study sites in that there is extreme schedule pressure to deliver additional functionality
to customers. Thus, the need for new features along with defect corrections has re-
suited in very frequent intermediate releases. This, in turn, often results in staff pres-
sure and customer-driven reactive development.

This group appears to have a great motivation for process improvement. This group
has defined a development process which is currently being introduced and de-
bugged. This process definition work will continue, and basic measures should be
added to support the process. An SEI style software process assessment will be con-
ducted during 1994. This organization is also planning for ISO 9000 certification.

22 CMU/SEI-93-TR-26

4 Performance Measures for Software Development
Organizations

4.1 Introduction

In order to observe the impact of software process improvement over time, it was nec-
essary to identify a basic set of performance measures for software development or-
ganizations. By observing the trend of such performance data, one may conclude
whether the organization's performance is improving as a result of the methods imple-
mented for improving the software development process.

Measures should be defined within an organization in accordance with the organiza-
tion's goals [AMI 92], [M61ler 93]. For example, an organization whose goal is to re-
duce development cycle times should have a highly visible measure of project
development schedule time. Thus, the organization performance measures defined
below are not intended to be "goodu measures for every organization. Rather they are
a basic set of more commonly applied measures that should assist in data collection
and observation of the case study sites. It is not necessary for all sites to measure in
the same way. However, each site must measure consistently over time.

The performance measures defined in this chapter were provided to the case study
sites with a request to provide data as per the definitions. It was suggested that the
organizations provide such data to the study, although data using differently defined
measures would also be welcome. What we desire for the study is consistent data re-
porting over time, such that an organization's performance improvement can be ob-
served as a result of software process improvement. This assumes that the products
developed by the organizations will be of similar complexity over the observation time
period (3-5 years). This is probably a reasonable assumption since the sites selected
are all involved with maintaining mature products as well as developing newer ver-
sions of these products.

Most of the sites that supplied data utilized the definitions provided, or they had al-
ready been tracking similar data resulting from previously shared software measure-
ment training across Siemens business units. It is suspected that the accuracy of the
reported data is better for the organizations that have established measurement pro-
grams as compared to organizations that collected the data for the first time for this
study.

4.2 Data Collection and Analysis

Organization performance is very much dependent on the application domain of the
developed products. Different performance can be expected for organizations de-

CMU/sEI-3-TR-28 23

pending on the complexity and application characteristics of the products being pro-
duced, the activities being performed by the development organization, the
development environment employed, and the business situation. For example, differ-
ent performance in productivity should be expected for different types of development
such as new product development, enhancement, migration, conversion, or mainte-
nance. Business factors (such as whether or not the business is profitable) and exter-
nal regulatory requirements also affect the performance of an organization. It is not the
intent of this project to establish what is good performance or to compare performance
of organizations, but to be able to observe changes in performance over time within a
specific organization.

In this report, a software development organization is defined as a collection of people
who produce software. Thus, a software development organization could be a soft-
ware engineering department or project team. One would anticipate that a software
development organization's performance would improve as their software develop-
ment process was improved. This could be observed by comparing performance mea-
sures calculated for current development as compared with prior developments,
provided they are doing work of similar difficulty. These developments are usually
called releases, projects, or products within the development organization. We will col-
lect performance measures on successive developments for producing a software en-
tity which is delivered to users (customers).

In organizations where many independent projects are simultaneously ongoing, the
project performance measures could be averaged for the overall organization and
then compared at time intervals (e.g., for each fiscal year). The performance mea-
sures will need to be observed for a multiyear time period, since process improvement
methods often require substantial time for training and acceptance within the organi-
zation, and development cycle times may be long.

4.3 Primary Data

It is suggested that certain primary data be collected for each software development
organization as summarized in Table 4. These data are similar to the recommended
"SEI core measures" [Carleton 921. The baseline data should initially be collected for
the last major product software release that has been used by customers in the field
for at least one year.

24 CMUI/SEI-93-TR-26

Table 4: Primary Data

Measure Units of Measurement

Defects Number of defects found per phase

Product size Lines of code (LOC)

Effort Staff-hours

Schedule duration time, actual Months per phase

Schedule duration time, estimated Months per phase

The number of defects found per phase and in total should be counted. Each organi-
zation will have unique defect counting rules, describing what is counted as a defect
and during which activities they are counted. For guidance, [Florac 92] should be con-
sidered, in which a software defect is defined to be any flaw or imperfection in a soft-
ware work product or software process. When found in executable code, a defect is
frequently referred to as a fault or bug.

The definition of a phase will vary depending on the organization's software develop-
ment process. For simplicity, we will count faults during three generalized phases.

"* The implementation phase will begin when an approved functional
specification is available and high-level design (HLD) has begun. The
implementation phase would normally include process steps such as
high-level design, detail design, coding, unit test, and integration.

"* The qualification testing phase will begin when an integrated software
system is available for testing, usually performed by an independent
test function.

"* The field use phase will begin when the first software system is
delivered to a customer and faults will be counted for one year of
customer use after the first installation is made.

These generalized phases are shown in Figure 4-1.

CMULSEI-3-TR-26 25

No. Defects Found

Implementation Field Use
1 Year

Qualification I

Testing

Bgin Test Install Time
HtLD System

Rgure 4-1. Generalized Process Phame

Product size should be measured using function points [IFPUG 90] or lines of code.
For lines of code (LOC) measurement definition, the Siemens LOC Norm [Siemens
89] or [Park 92] should be considered. The measurement should be made at the time
of product release to customers. The desired measure to be reported is the count of
lines of code excluding comment and blank lines.

Effort should be counted in accordance with the existing organization accounting and
time reporting procedures. Effort should include the work performed by all staff in-
volved with software development including test, quality assurance, and documenta-
tion specialists. Effort should be counted for the duration of the phases defined above;
i.e., effort involved with the product development from the beginning of high-level de-
sign to one year after first customer delivery. Guidance on effort counting can be found
in [Goethert 92].

Schedule duration time for the implementation and qualification testing phases should
be reported. We will define the schedule cycle time as the calendar time between the
start of high-level design to first customer delivery or the sum of the schedule duration
times for the Implementation and qualification testing phases. In addition to the actual
time required for the last release, it would be desirable to report the times that were

26 CMULSEI-03-TR-26

estimated for these phases prior to implementation, i.e., the estimated schedule. Guid-
ance on schedule information reporting can be found in [Goethert 92].

4.4 Environmental Data

Improving the software development process will improve the quality of the software
products resulting from that process. It is important to realize, however, that process
is only one of the factors that can be controlled for improving software quality. This
can be seen in Figure 4-2 developed by [Kellner 92]. Factors other than process that
influence software quality include the skills and experience of the people developing
the software, the technology used such as CASE tools, the product complexity, and
environmental factors such as schedule pressure, communications, etc.

Product

Environment Environmer

Process

Figure 4-2. Software Quality Determinants

It is desirable to measure some of the characteristics of the organization environment
in which the software was developed. This data will be used to attempt to identify key
influences on the development organization's performance, and to help understand
the environmental context in which the products are developed. The data collected will
be somewhat Osoft.0 Within the discipline of software measurement, environmental
measures are somewhat more poorly defined and less commonly applied than product
and process measures. It is anticipated that these measures may change as more ex-
perience is obtained.

CMU-SI34-TIF-26 27

The basic set of environmental measures is summarized below in Table 5.

Table 5: Environmental Data

Measure Units of Measurement

Staff size Number of people

Staff turnover % people who left in last 12 months

Maturity level Estimate or from assessment: 1-5

Morale Subjective response class: poor,
average, good, excellent

Organization staff size should be measured at the time of the baseline measurements
or at a recent convenient time point (e.g., last month, quarter). Staff members should
be counted in the case study software development organization who perform the
work included in the effort measure above. For example, staff members such as soft-
ware engineers, testers, quality specialists, and documentation specialists should be
counted. The count should include full-time, permanent employees, not temporary
contractors or part-time employees. It is well accepted that larger organizations are
generally more difficult to manage and control, and that software development pro-
cesses for small organizations can be much different than for large organizations.

Staff turnover should be measured as an indicator of the stability of the organization.

Staff turnover will be defined as shown in the following equation:

Staff turnover = % (No. staff members who have left in the last 12 months)/Staff size.

A high degree of staff turnover could be the result of downsizing activities or extreme
business conditions that result in organization stress. This measure can also give
some insight into how long staff members remain within the organization. If many new
hires replace the staff members who left, an organization may have training and staff
assimilation challenges. Some organizations may also wish to calculate the staff turn-
over independently for management and technical staff.

The software process maturity level of the organization should be determined in ac-
cordance with the Capability Maturity Model (CMM) [Paulk 93]. We have suggested
that the case study site organizations conduct self assessments around the time of the
baseline measurements, and then biannually thereafter. If an assessment has been
done of the organization within the last two years, the assessment level should be re-
ported. If an assessment has not been done, then a current estimate of process ma-
turity level should be made. These data are desirable for correlating the process
improvement methods selected with the process maturity of the organization.

28 CMULSEI-93-TR-26

It would be desirable to measure the staff morale of the organization to see if this has
a significant influence on organization performance. This is not easy to measure, al-
though some organizations conduct periodic morale and opinion surveys. If such a
survey is used, then the data would be readily available. If not, an estimate should be
made of the current morale. Since this is a subjective metric, we suggest that a four
level response class scheme be used - poor, average, good, and excellent.

4.5 Performance Measures

A basic set of performance measures for a software development organization can be
calculated from the primary data as summarized in Table 6. The measures will be cal-
culated for each successive project, release, or product and compared with the mea-
sures of the prior project, release, or product over time. It is not the intent of this
investigation to compare measures across organizations, but to observe the perfor-
mance improvement within an organization. Each of the measures is described be-
low.

Table 6: Organization Perfornmace Measures

Measure Units of Measurement Primary Data Used

Defect detection % Defects found per phase Defects
distribution

Defect rate Defects/KLOC per phase Defects, product size

Project productivity LOC/Staff-hour Product size, effort

Schedule cycle time Months Schedule duration time,
actual

Schedule adherence %(Estimated-ActualY Actual and estimated
Estimated schedule duration times

The first two organization performance measures are calculated from the defects pri-
mary data. Defect detection distribution is calculated as the percentage of faults found
in each development phase. Defect rate is calculated as the number of defects for
each development phase divided by the product size in thousands of lines of code
(KLOC). The defect rates should decrease for later phases of the product develop-
ment process. If the number of users of the product is large, one can assume that al-
most all of the product defects will be found during its lifetime, and that many of the
faults will be found during the first year of use. The defect rate for the field use phase
is thus a reliable measure of product quality [Jilek 92). Exceptions to this would be the
cases when a product's quality is very bad, and the users quickly stop using the prod-

CMU/SEI-93-TR-26 29

uct and stop reporting defects, or the number of users is small. The defect insertion
rate is defined as the sum of the defect rates over all phases.

Project productivity is a basic organization performance measure. A common method
of calculating project productivity is to divide the product size by the effort. Organiza-
tions who develop multiple releases for the same product may wish to count delta lines
of code for their release productivity calculation. Delta lines of code usually count
changed and added lines of code for a release as compared with the prior release.
Productivity could also be calculated using function points rather than lines of code. In
some cases project productivity calculated using the total product size is called prod-
uct productivity. If delta lines of code are counted, the project productivity is often
called process productivity. One must also define rules for handling reused code. Pre-
viously tested code integrated within new products is a major productivity enhancer,
and development staff should be encouraged to reuse code [Basili 911.

Schedule cycle time is calculated by adding the actual schedule duration times used
for the implementation and qualification testing phases of the project. Schedule adher-
ence is a measure of the organization's ability to develop products on time, and to
meet commitments concerning schedules. As shown in the equation below, schedule
adherence is calculated as the difference between the estimated schedule duration
time and the actual schedule duration time. The measure is calculated as a percent-
age; a negative number indicates a schedule slip, while a positiva number indicates
that the actual development was done in less time than estimated.

Schedule adherence = % (Estimated schedule duration time - Actual schedule dura-
tion time) / Estimated schedule duration time.

Other common measures of organization performance which will not be considered
here include:

"* Development cost (which can be calculated as the effort multiplied by

the average hourly labor rate for the project).

"* Profitability.

"* Customer satisfaction.

Examples of methods to calculate these measures can be found in [M61ler 93].

4.6 Observing Trends In Performance

The impact of process Improvement methods can be observed over time by observing
the trend of the organization performance measures. The selection and definition of
organization performance measures are dependent on the goals of the organization.

30 CMU/SEI-93-TR-2e

The performance measures defined here, however, correspond to goals that are com-
mon among many organizations.

4.6.1 Defect Trends
Many organizations wish to find defects early in their software development process
and they want their customers to find as few defects as possible during field use. Meth-
ods such as formal inspections [Fagan 76] help organizations improve their ability to
find defects early in their development process. An organization can observe the trend
of the distribution of defects for various development phases over time. If the average
cost is known for correcting a defect, then the savings can be calculated over time as
more defects are found earlier in the development process. Similarly, the defect rates
can be compared over time, and the resulting improvement in product quality can be
observed. The defect rate for field use is often identified as a numerical target goal for
organizations wishing to improve product quality within a specified time. A commonly
used example target goal is Six Sigma performance which would equate to a field use
defect rate of 0.0034 defects/KLOC. This is a very aggressive quality goal which most
organizations today do not achieve. Capers Jones has identified quantitative targets
for excellent software performance based upon data obtained from Baldrige Award
winners [Jones 92]. He identifies a target performance value for product quality of less
than 0.025 field use defects per function point per year. For products written in C, this
would approximately correlate to a field use detect rate of less than 0.2 defects/KLOC.

4.6.2 Productivity Trends
Project productivity should improve as the software development process is improved.
As product and process quality are improved, less rework will occur in the develop-
ment process, and overall project productivity will increase. This improvement will be
offset somewhat by the additional effort that will be required for improving the process,
for example, the training time needed to learn a new method. Project productivity could
also be affected negatively as a result of external influences, e.g., business climate
changes, natural disasters (hurricanes).

4.6.3 Schedule Trends

Reducing schedule cycle time is a primary goal of most executives of organizations
that produce products. This is based upon the observation that organizations that are
first to market with a new product typically gain a larger share of the market. An orga-
nization may also wish to reduce the difference between its schedule estimates and
actual performance. An organization with good repeatability of schedule prediction is
in a stronger position to reduce schedule cycle times.

CMU/SEI-03-TR-26 31

4.6A Process Improvement Goals

The goals and observation of trends resulting from process improvement are summa-
rized below in Table 7. Many of the numerical targets are obtained from [Jones 92].
The numerical targets given may be difficult for many organizations to achieve de-
pending on their current maturity level. By observation over time of the performance
measures, one may conclude whether or not the software process improvement meth-
ods implemented are having an impact on an organization's performance.

Table 7: Summary of Process Improvement Goals

Business Goal Performance Target Value Target TrendMeasure

Find defects earlier Defect detection Field use < 5% Find >75% of
distribution defects through

inspections

Improve product Defect rate <0.1 defects/ >40% per year
quality KLOC in field use decrease in defect

rates

Increase Project Dependent on >25% per year
productivity productivity product size improvement

Reduce time to Schedule cycle Dependent on reduce by >15%
market time product size per year

Improve schedule Schedule no worse than -10% Achieve target
predictability adherence value and maintain

within -10%-0%.

4.6.5 Return on Investment
Another observation that an organization may wish to make is the financial impact
which resulted from implementation of the process improvement methods. This nor-
mally would be a return on investment (ROI) type of calculation in which the cost sav-
ings realized could be compared with the cost of investing in the process improvement
methods. In [Rozum 93], a process improvement benefit index is defined as the
amount saved as a result of process improvement divided by the cost of process im-
provement. The cost of process improvement would contain costs such as training
personnel in a process improvement method, consultant fees, managing the improve-
ment action activities, and purchasing tools. The amount saved could include reduced
rework, less effort to produce a product, increased productivity, reduced maintenance
costs, etc. To calculate your savings, you could use the change over time of the defect

32 CMU/SEI-93-TR-26

detection distribution, if the average cost to correct a defect in each phase is known.
This measure is somewhat difficult to apply since many of the costs and savings are
not easily quantified or captured (such as improved customer satisfaction). We will at-
tempt to calculate the process improvement benefit index in those case study site or-
ganizations where cost and savings data are available.

4.7 Performance Measures Conclusion

This report defines a basic set of measures to observe the performance of software
development organizations over time. The details of definition, data collection, and use
of the measures will be unique to each organization participating in the case study.
The purpose of this report is to identify a limited number of simple measures that could
be used for data collection and observation. The question to be studied is: What is the
impact of software process improvement methods used within Siemens software de-
velopment organizations? We anticipate that the performance of an organization will
improve as its software development process is improved. The basic set of measures
will help us to better understand the result of software process improvement. We will
thus be better able to provide guidelines to other organizations wanting to improve
their software development process. We recommend the defined performance mea-
sures to organizations that are planning to establish measurement and process im-
provement programs.

CMU/SEI-93-TR-26 33

34 CMU/SEI-43-TR-20

5 Baseline Performance Data

5.1 Data Collection

A metrics baseline was requested from each case study site. We asked each point-
of-contact to fill out a data input form indicating the primary data, environmental data,
and organization performance measures defined in Chapter 4 of this report. The data
input form was accompanied by a white paper, similar in content to Chapter 4, discuss-
ing and defining the performance measures. A letter was sent to each point-of-contact
indicating that the defined measures were merely examples, and that if better mea-
sures of performance were used by the organization, that data could also be reported.
Since the goal of the project was to observe organization performance over time, the
definitions of the measures could be unique to each case study site as long as they
were consistently applied over time. It was suggested that the measurement baseline
be calculated using a recent product release that had been used by customers in the
field for one year.

5.2 Data Analysis

The following observations were made concerning the collection of the baseline per-
formance data.

All organizations considered the performance data as proprietary and
confidential. Some organizations considered the data to be so
sensitive that they refused to supply it for the study, although they
participated in the interviews. The organizations stated that they
needed to protect their data in order to control customer
communications and interactions. We also suspect that they may
have feared the use of the data for comparison across organizations.
Although not explicitly stated, it is suspected that this fear may be
greater within organizations that have multiple development sites
within multiple countries. Organizations also expressed this fear of
comparison to others (particularly across national barriers) when
asked to perform self-assessments as part of a corporate thrust.

* Many of the organizations had difficulty collecting the performance
data. The least amount of difficulty was exhibited in organizations that
had established metrics programs. It was apparent that some of the
organizations were collecting such data for the first time, and used the
case study project as a motivator for measurement application. The
other difficulty resulted from the fact that many of the organizations
work on many product releases simultaneously, often with the same
staff. For example, a staff member may be asked to maintain a

CMU/5E.4WoTR-20 35

previously released software version, as well as be involved with
design of future releases and implementation of the current release.
Thus, it was often difficult to collect performance data so as to
accurately separate effort, time, and defects among the various
releases. Having staff members work on multiple releases was often
used to meet customer needs, i.e., reduce the time increments
between releases when schedule cycle times were long. In general,
this was felt to be a complexity issue in managing the organization.

"* Most of the organizations tended to adhere to the measurement
definitions as given in Chapter 4. This may be a result of corporate
training activities and standards developed over the past few years on
measurement application.

"* As anticipated, the environmental data were viewed as controversial
and difficult to determine. For organizations that had not yet
conducted an assessment, the maturity level estimates tended to differ
significantly depending on who the point-of-contact asked within the
organization. In general it was observed that newer staff tended to
estimate the maturity level lower than staff who had worked within the
organization for a longer time.

5.3 Initial Data

The initial baseline performance data are summarized here as a composite of all the
organizations that reported data. Again, we anticipate that there are differences
among the organizations concerning definition of measures, and the accuracy of the
data collected. The composite data is provided merely to identify rough performance
indicators and demonstrate the diversity among the case study sites. The reader
should be cautioned not to draw strong conclusions from the data since not all organi-
zations reported data for all measures. The primary data, environmental data, and or-
ganization performance measures collected from the case study sites are summarized
in Tables 8 to 10 respectively. The first value given is a composite nominal value av-
eraged over all the reported projects followed by a range of values collected.

36 CMLU/SE143-TR-26

Table 8: Primary Data - Summary

Measure Definition Units Nominal Value Range

Defects Count of defects found Number of Implementation: Implementation:
during implementation, defects 1400 120-6300
qualification testing, and found per Qualification Qualification
field use phases phase testing: testing:

650 130-2500
Field use: Field use:
180 1-450

Product Lines of code (LOC) LOC 1.6M 150K-5M
Size count excluding

comment and blank lines

Effort Staff-hours required for Staff- 300K 15K-750K
product development hours
through first year of field
use

Schedule Schedule time used per Months Implementation: Implementation:
time phase per phase 14 4-20
duration - Qualification Qualification
actual testing: testing:

7 2-16

Schedule Schedule time estimate Months Implementation: Implementation:
time per phase per phase 13 4-22
duration - Qualification Qualification
estimated testing: testing:

5 2-13

Table 9: Environmental Data-Summary

Measure Definition Units Nominal RangeS• Units Value Ra

Staff Currnt number of software engi- Number of people 450 25-1600
Size neers, tesers, quality specialists, &

documetaon specialists

Staff % (No. staff members who have left % people who left 14 4-21
turnover in last 12 monthsYStaff size

Maturity CMM levels 1-5 from last assessmuent 1-5 2 1-4
level orestimate

Morale Subjective estimate of staff morale Poor, average, Average Average
good, or excellent -good

CMU/SEI-93-TR-26 37

Table 10: Organization Performance Measures - Summary

Measure Definition Units Nominal Value Range

Defect % of defects found % of Implementation: Implementation:
detection during implementation, defects 63 23-68
distrib- qualification testing, and found per Qualification Qualification
ution field use phases phase testing: testing:

29 27-78
Field use: Field use:
8 4-35

Defect Defects divided by Defects/ Implementation: Implementation:
rate product size per phase KLOC 0.8 0.2-1.7

per phase Qualification Qualification
testing: testing:
0.6 0.3-1.2
Field use: Field use:
0.2 0.008-0.36

Project Product size divided by LOC/Staff 5 2.6-6.7
product- effort -hour
ivity

Schedule Sum of schedule duration Months 21 6-36
cycle time times for implementation

& qualification testing
phases

Schedule %(Estimated schedule % -17 -42 -- 13
adherence duration time - Actual

schedule duration
time)/Estimated schedule
duration time

38 CMU/SEI-93-TR-26

6 Guidelines for Selecting Process Improvement
Methods

Having observed the selection of software process improvement methods at the case
study sites, we feel it is appropriate to provide some general guidance to organizations
interested in process improvement. An approach to selecting and implementing soft-
ware process improvement methods is summarized below and described in the
following sections.

1. Establish improvement goals.

2. Identify improvement key process areas (KPAs).

3. Select process improvement methods.

4. Establish responsibility.

5. Communicate the process improvement plan.

6. Train.

7. Define progress tracking measures.

8. Implement the process improvement methods.

9. Collect and analyze tracking data.

10. Adjust the process improvement plan.

6.1 Establish Improvement Goals

The goals for software process improvement should be identified and communicated
to the entire organization. The goals should be derived from and be consistent with
the overall business goals of the organization. The goals of improved performance
(e.g., improved quality, improved productivity, reduced cycle time, and better schedule
adherence) should be described in accordance with the terminology of the specific
corporate environment. Quantitative goals of what improvements are expected to be
achieved in a specific time frame should be identified. The organization performance
measures In Table 6 and the target trend values In Table 7 within Chapter 4 of this re-
port can give some guidance for establishing the improvement goals. Some example
improvement goals are given belw.

"* Reduce field defect rates by 50% within 3 years.

" Find at least 75% of all defects throL h Iinspectlons within 2 years.

CMUIsE143-TR4-6 3

"* Double project productivity within 4 years.

"* Reduce schedule cycle time to 20 months within 5 years.

"* Achieve implemented schedule to within 10% of the estimate within 3
years.

6.2 Identify Improvement Key Process Areas

The organization should identify the key process areas (KPAs) on which it will focus
its process improvement efforts. These KPAs would typically be identified as findings
during a software process assessment (SPA). It is important to select process im-
provement methods that are appropriate to the current maturity level of the organiza-
tion, as identified in the Capability Maturity Model for Software (CMM) [Paulk 93]. The
CMM identifies the following five levels of maturity of a development organization.

1. Initial. The development environment is unstable. The organization
does not consistently apply software engineering management to the
process, nor does it use modem tools and technology. Performance
can only be predicted by individual, rather than organizational, capabil-
ity. Level I organizations may have serious cost and schedule prob-
lems.

2. Repeatable. At Level 2, the organization has installed basic software
management controls. Stable processes are in place for planning and
tracking software projects. Project standards exist and are used.

3. Defined. At Level 3, the organization has a standard process for
developing and maintaining software across the organization. The
software engineering and software management processes are
integrated Into a coherent whole. A software engineering process
group (SEPG) facilitates software process definition and improvement
efforts. Organization-wide training is in place, to ensure that all
employees have the skills necessary to perform their duties. Peer
reviews are used to enhance product quality.

4. Managed. At Level 4, the organization sets quantitative quality goals
for software products. Productivity and quality are measured for
important software process activities across all projects in the
organization. A process database is used to collect and analyze the
data from a carefully designed process. There are well-defined and
consistent measures for evaluating processes and products.

40 OMU/SEI-93-TR-26

5. Optimizing. At Level 5, the organization is focused on continuous
improvement. There are means of identifying weak processes and
strengthening them. Statistical evidence is available on process
effectiveness and is used in performing cost-benefit analyses on new
technologies. Innovations that exploit the best software engineering
practices are identified.

Some software process improvement methods and their corresponding primary key
process areas of the CMM are given in Table 11.

Thble 11: Software Process Improvement Methods

Method KyocsrmCklm
Level

Estimation Software project planning 2
ISO 9000 certification Software quality assurance 2

Organization process def. 3
Software process assessment (SPA) Organization process focus 3
Process definition Organization process def. 3
Formal inspection Peer reviews 3
Software measurement & metrics Software project planning 2

Software project tracking & oversight 2
Integrated software mgt. 3
Quantitative process mgt 4
Software quality mgt 4
Process change mgL 5

Computer aided software Software configuration mgt. 2
engineering (CASE) Software quality assurance 2

Software project tracking & oversight 2
Organization process def. 3
Software product engr. 3

Interdisciplinary group methods intergroup coordination 3
(IGMS)
Software reliability Quantitative process mgt. 4
engineering (SRE)

Quality function Software quality mgt 4
deployment (QFD)

Total quality management (TQM) Organization process focus 3
Quantitative process mgt. 4
Software quality mgt. 4
Process change mgt. 5

Defect prevention process (DPP) Defect prevention 5
Cleanroom software development Quantitative process mgt. 4

Software quality mgL 4
Defect pwrention 5

• 0LV8E143-TRr-2 41

Key process areas of the CMM, and some example software process improvement
methods are illustrated in Figure 6-1.

'Optiizin (1)

6.3~~10 Select PreventionentMto

DPP Manage (4)

e n software rod e imasproemt

the~~ ~ jollowin when seleti themetods

Cn Tency Iwi Coorlnsaton

QF IM~rA~mfd SoltWNr MWrWgem~t
Tmk~qPW
O*ntztm Paolb Definitt.k Wi•~ Proom Foms

$oftw em Projec T mdd & Overight .01.------ lama-
SAnW* Pf*it PIOvN"

Figure 6-1: Key Proceqr Areen

6.3 ,Solec Process Improve nt Methods
It is suggested that no more than three or four software process improvement methods
be selected for achieving the KPAs of Interest. It is recommended that you consider
ftheollowing when selecting the methods.

* Appropriateness of method to maturity level and target KPAs.

* Consistency with your organization's goals.

0 Potential benefit.

,* Initial investment reuirements.

42 W MUEI-93-TR-28

"* Implementation difficulty.

"• Anticipated organizational resistance.

One tool which could assist you in selecting the methods is a matrix identifying selec-
tion criteria for each process improvement method. This matrix would list the methods
being considered with a subjective score for key selection criteria. An example matrix
is given in Table 12 where the criteria are assigned a value from 1-Low to 5-High.

6.4 Establish Responsibility

After an organization has chosen the appropriate process improvement methods, it
should next establish responsibility for the software process improvement program.
This is often assigned to a software engineering process group (SEPG) associated
with a management steering committee. Specific improvement methods can be as-
signed for implementation to action teams responsible for introducing the method to
the organization.

6.5 Communicate the Process Improvement Plan

The process improvement plan must be communicated to the entire organization so
that its purpose is understood and accepted. This step is necessary to gain buy-in
from the organization for the actions oriented towards software process improvement.
The benefits of software process improvement must be communicated to everyone to
obtain a high degree of cooperation and improvement.

6.6 Train

Training is necessary to transfer the software process improvement methods to the or-
ganization so they become accepted practices. Each method will most likely require
specialized training for implementation. In addition, general training on software pro-
cess improvement is desirable for all software engineering staff. In this manner, some
of the environmental issues conducive to process improvement can be addressed,
such as establishing a "quality culture."

CMULSEI-93-TR-26 43

Table 12: Example Matrix of Criteria for Selecting Process Improvement Methods

Potential Initial Impe n Ori oazMetho Benefit Investment Difflculty OReinatna

Estimation 2 1 1 1
IS09000 1 3 2 1

Software 3 3 3 1
process
assessment (SPA)
Process 3 3 4 2
definition
Formal 4 2 1 1
inspection
Measurement 4 2 4 4
Computer aided software 3 4 4 2
engineering (CASE)
Interdisciplin. group 3 2 3 3
methods
Software 2 3 4 2
reliability
engineering (SRE)
Quality 3 2 3 2
function deployment
(QFD)
Total quality management 3 3 4 3
(TQM)
Defect 5 4 4 3
prevention
process (DPP)
Cleanroom 5 5 5 5

6.7 Define Progress Tracking Measures

Measures should be next defined for tracking the progress of the software process im-
provement methods. In some cases, the training given for the selected methods will
provide suggested measures. Within this report, Table 6 of organization performance
measures may prove useful. Suggestions for implementing a measurement process
can also be found in [McAndrews 93].

6.8 Implement the Process Improvement Methods

The methods are then implemented so that they will eventually become part of the
standard work practices of the organization. For the more complex methods, it is sug-

44 CMULSEI-93-TR-26

gested that a pilot project implementation be made prior to general introduction to the
organization. As taught within the SEI Managing Technological Change Course, the
time for acceptance and institutionalization of new methods may be excessive and
barriers to acceptance of new ideas must be overcome. This is illustrated by the tech-
nology adoption curve (Figure 6-2) from the course taught by Deimel, Maher, and My-
ers.

6.9 Collect and Analyze Tracking Data

Once the measures are defined and the method implementation is initiated, the track-
ing data can be collected and analyzed. These data are important to observe the im-
pact of the method and to establish how effective its implementation is.

Institutionalization

Adoption

Installation
E

rE2r Undlerstandin
0

Contact

Time

Figure 6-2. Technology Adoption Curve

6.10 Adjust the Process Improvement Plan

Analysis of the tracking data will provide insights into the effectiveness of the imple-
mentation of the software process improvement program and will help to identify what
adjustments should be made to the plan. Possible alternatives include modifying the
implementation by providing better or additional training and expanding the pilot
project, for example. The data may suggest stopping or delaying implementation of
certain software process improvement methods where acceptance barriers are large
and difficult to overcome. The data will also suggest when the method has been suc-
cessfully adopted. In this case, it is time to identify some new software process im-
provement methods for implementation. This software process improvement methods

CMU/SEI-03-TR-26 45

selection approach can then be followed again from steps 1,2, or 3 as defined in Sec-
tions 6.1-6.3.

46 OJMU/SEI.43-TR-26

7 Common Implementation Problems and
Introduction Hints

The observations given below identify some common barriers to implementation of
software process improvement methods experienced by the case study sites, and
some of the techniques used to overcome these barriers.

" Getting started: Some of the organizations had difficulty getting
started with software process improvement and the methods they
selected. We encouraged these organizations to undergo
assessment as a proven technique for helping to identify their priorities
and get buy-in across the organization for process improvement
activities. We also encouraged them to establish a software
engineering process group (SEPG). They were given guidance
material and contact information for the SEI associated software
process improvement network (SPIN) organizations, and more
experienced Siemens development organizations.

"* Staff turnover: Some of the organizations have been involved in
downsizing (layoff) activities which affected software engineering staff
turnover. This is a particularly difficult barrier for software process
improvement since the improvement effort requires initial and
sustained investment, and the impact of the improvement may not be
measurable for a few years. We have also observed that within any
organization, certain champions and advocates of software process
improvement exist. If these individuals are affected or their priorities
change as a result of downsizing, then introduction of new software
process improvement methods is slower and more difficult.
Organizations exhibiting downsizing were encouraged to consider
profitability goals as part of the initiation and planning for software
process improvement. Only one of the case study organizations had
previously utilized profitability measures within the software
development organization, although all the organizations were
affected by overall business profitability goals. We have also observed
that large staff turnover currently appears to be a greater problem at
the U.S. case study sites than those in Germany.

* Dedicated resources: Some of the organizations utilized part-time
resources, usually line managers or improvement teams, to implement
software process improvement methods. Although this issue is greatly
dependent on the size of the organization and the specific skills and
influence of the individuals involved, part-time effort on process

CMLYSEI-o3-TR-26 47

improvement is usually not as effective as when full-time dedicated
resources are used. Organizations using part-time resources for
process improvement were encouraged to appreciate the return-on-
investment of process improvement. They were also encouraged to
introduce some of the methods on a pilot project basis until they were
generally recognized as successful. The most effective observed
SEPGs often had a full-time team leader supported by team members
who were first-line managers dedicating approximately 20% of their
time to process improvement. These managers had control of staff
who could be applied to process improvement as required.

" Management support: We have generally observed that management
support is necessary for software process improvement. To assist in
overcoming this barrier, the point-of-contacts were offered support in
communicating with and educating their management on the benefits
of process improvement. The need for management support and buy-
in at all levels of the organization seemed to be a more important issue
within the organizations in the U.S. than for those in Germany. We
also observed that organizations that provided quality training (e.g.,
TOM, Crosby), were generally more supportive of efforts oriented
towards software process improvement.

"* Time restrictions: Some organizations had difficulty finding the time to
work on software process improvement since they had extreme
commitments to deliver customer products. We pointed out in these
cases that delivery dates had high priority, but that when the release
was completed, that effort must be put into software process
improvement in order to avoid future emergencies.

48 CMUVSEI43-TR-26

8 Conclusions and Recommendations

This report contains limited results because we have been observing the case study
sites for only a short period of time. Several years are required in order to observe the
impact of software process improvement. Nevertheless, some preliminary recommen-
dations can be made at this time to organizations wishing to improve their software de-
velopment process.

"* Use the Capability Maturity Model (CMM) as a guide to suggest what
actions should be taken to improve your software process. At
Siemens case study sites, the CMM was relatively easy for
organizations to understand and apply to their situation. It gives an
organization a framework for determining which methods an
organization should use to improve based upon its current maturity.
Table 13 summarizes some of the implementation issues of some
commonly applied software process improvement methods. For each
method, we recommend a maturity level range at which an
organization should be in order to consider implementing the method
for the first time. In addition, based on our experience at Siemens, we
provide a summary of our perceived pros and cons concerning
implementation of the method.

"* Use assessment to start a software process improvement program.
Assessment is a verv powerful method for identifying priorities for
improvement and bukiding consensus within the organization.

"* Pick a few process improvement methods and implement them
effectively. Many organizations make the mistake of initiating too
many software process improvement activities which do not get
implemented well.

"* Pay attention to the implementation of the method as much as or more
than the method itself. Sustained improvement over time is
necessary, and thus, the selected methods must be implemented well.
This includes the quality of training and management of the actions to
be implemented.

CMU/SEI4s-TR-26 49

Table 13: Implementation Issues Sunmary

CMnsid Pros co

Estimation 1 Fundamental to project Works best when historical
planning data are available

ISO 9000 1 Required for many markets Emphasis is on
evidence rather than
improvement

SPA 1-2 Good first step towards Investment provides
process improvement primarily findings

Process definition 1-2 Provides baseline for Representation tools skills
improvement often missing

Formal inspection 1-2 Easy to begin More commonly used for
code than documents

Measurement 1-2 Used with other methods Must be tailored to an
organization's specific
goals

CASE 1-2 Automates process High investment (e.g.,
license fees, training)

IGMs 1-2 Promotes better teamwork Possible communication
& meeting overhead

SRE 2-3 Provides field defect rate Training and skills often
predictions missing

QFD 2-3 Helps build the "right" Difficult to manage
products product complexity and

communications
TQM 2-3 Builds a "quality culture" Requires commitment &

implementation through-
out organization

DPP 3-4 Makes classes of errors Can only be considered by
extinct mature organizations

Cleanroom 3-4 Can result in high product Different than current
quality development practices

Introduce improvement methods in an appropriate sequence. Some
process improvement methods are easier to introduce and implement
than others. For example, defect detection (formal inspection) must be
implemented before defect prevention (DPP). Also, inspections are
easier to introduce than a metrics program. Organizations at lower
levels of the CMM should consider implementing the easier methods
first so as to improve their retum-on-investment and increase the
likelihood of successful implementation. A common pattem observed

50 CMU1SEI-43-TR-26

at a number of the case study sites is to begin implementing simple
measures oriented towards the level 2 KPAs of software project
planning and software project tracking and oversight. Once progress
has been made on achieving the level 2 KPAs, formal inspections are
implemented. As inspections are implemented, further measurement
data become available and are used for better understanding of the
development process with respect to measures such as where defects
are found. As the level 3 and 4 KPAs are implemented, the
organization starts looking at defect prevention process (DPP) in order
to reduce the number of defects introduced to the process.

* Consider cultural factors when implementing process improvement.
Country cultural factors are substantial. Although the case study sites
are quite diverse organizations with differing products and
development processes, the diversity appears to be greatest between
organizations residing in Germany and those residing in the U.S. In
many cases, the same software process improvement methods were
selected and implemented at case study sites in Germany and the
U.S., often using the same training courses and trainers. However, the
way that the methods were introduced and the level of acceptance of
the methods, were very different between the German and U.S. sites.
This implies that the cultural characteristics of an organization have a
significant impact on its success with adopting software process
Improvement methods. It is recommended that software engineering
managers and other staff members involved with organizational
change (e.g., SEPG members) pay particular attention to the cultural
characteristics of the organization when implementing selected
process improvement methods.

CMUSaEI-TR-2e 51

52 CMLMSEI-S3-TR-26

9 References

[AMI 92) A Quantitative Approach to Software Management, ESPRIT
AMI Project Handbook. 1992.

[Basili 91] Basili, V. R., and Rombach, H. D. "Support for Comprehensive
Reuse." Software Engineering Journal (Sept. 1991): 303-316.

[Card 93] Card, D., ed. "Bootstrap: Europe's Assessment Method."
IEEE Software (May 1993): 93-95.

[Carleton 921 Carleton, A. D. Software Measurement for DoD Systems:
Recommendations for Initial Implementation (CMU/SEI-92-
TR-19, ADA 258305). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, September 1992.

[Fagan 76] Fagan, M. E. "Design and Code Inspections to Reduce Errors
in Program Development."0 IBM Systems Jouma4 Vol. 15, No.
3:182-210.

[Florac 92] Florac, W. A. Software Quality Measurement: A Framework
for Counting Problems, Failures and Faults (CMUISEI-92-TR-
22, ADA 258556). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, September 1992.

[Goethert 921 Goethert, W. B.; Bailey, E. K.; Busby, M. B. Software Effort
Measurement: A Framework for Counting Staff-Hours
(CMU/SEI-92-TR-21, ADA 258279). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, September
1992.

[Humphrey 89] Humphrey, W. S. Managing the Software Process. Reading,
Mass.: Addison-Wesley Publishing Company, 1989.

[IFPUG 90] Function Point Counting Practices ManuaL International
Function Point Users Group.

cMUE-3-M28 53

[Jilek 92] Jilek, P.; M6iler, K-H.; Paulish, D. J. "The Use of Metrics for
Software Development." Proceedings of the Ninth World
Conference on Computer Security, Audit, and Control.
Elsevier Advanced Technology, November 1992.

[Jones 92] Jones, C. "Being Best in Class." Software Productivity
Research Report, December 1992.

[Kellner 92] Kellner, M. I., and Over, J. W. OA Software Quality
Improvement Framework," Proceedings of the Software
Engineering Forum. Milan, Italy; June, 1992.

[McAndrews 93] McAndrews, D. R. Establishing a Software Measurement Pro-
cess (CMU/SEI-93-TR-16, ADA 267896). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University,
July 1993.

[M611er 93] MOller, K-H., and Paulish, D. J. Software Metrics: A
Practitioner's Guide to Improved Product Development. Los
Alamitos, Calif.: IEEE Computer Society Press, 1993.

[Park 92] Park, R. E. Software Size Measurement: A Framework for
Counting Source Statements (CMU/SEI-92-TR-20, ADA
258304). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, September 1992.

[Paulk 93] Paulk, M. C. et al. Capability Maturity Model for Software,
Version 1.1 (CMU/SEI-93-TR-24, ADA 263403). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon
University, February 1993.

[Rozum 93] Rozum, J. A. Concepts on Measuring the Benefits of Soft ware
Process Improvement (CMU/SEI-93-TR-9, ADA 266994).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, June 1993.

[Siemens 89] Siemens Norm for Lines of Code. Software Definition der
zedenbezon Programmgrosse Masseinheit LOC (i.nes
of Code) (SN77353). May 1989.

54 CMLUSEI-3-TR-26

UnaJaMFZ6NCLASSMIMus

REPORT DOCUMENTATION PAGE
Ia..RIO SBo~tCUUiT C&AmSmcAllOt 1b. EESrR§CTIV MABXINOS

Unclassified None
2L. UECUPJT CspiArSICAT AUTHPg 3. mUrmuIInoAVAKABILIT OF RBKIW
N/A Aprved for Public Release
W~s.-'~: DIS;--.:sCMONG ADI S1DZz Disribution Unlimited
N/A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

&, PERF0ME40O kGJANV-4flOK REJKU NUMBIERMS S. MO0flORD4O ORGANKIZAIOI REP=~ NUMBER(S)

CRMLlSEI-93-TR-26 ESC-TR-93-2D0

GL. NAME OUFERFORNDI OROANIZA21ON Eb. FFICESYNBOL 7a. NAME OF MOMDROBNG ORGAM!ATIoN

Software Enginleeuing Institute Of8AW) SEt Joint Program Office
SEI

4L. ADDRESS (ft A@W mE *4..) 7k. ADDRESS (ck% flas mad zap cda&)

Carnegie Mellon University HO ESCIENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116

IL "WOFUMOISONO36 . OFFICE SYMBOL 9. M;aJRBIIWSTRIIUMENT 1DnIIFCA1MON NU11BER
ORGAU-43N O qWHbk) F1962890C0003

SOI Joint Program Office ESC/ENS
S&. .4DMS3S (dim mos. mmd 4 cad.)) 10. SOURCE O CFINUDC NOS.

Carnegie Mellon University imOR POmcr TAM WORK Uar
Pittsburgh PA 15213 635ELEC'N NOA N/A NOA

Case S~xtudiso SofWare Process Improverriu1 Methos
12. PERSOKAL AUTWRC)
Daniel J. Paullh, Residet Altilale. Siemens Coiporate Research, fnc.

13TYORRW IW~dCVEE 1.DA72 OF DEFO (yumam&o. day) 15. PAGE COUNr

Rnal FRO TO ecemer19 54 pp.

________CO IL___ _____ 3 SURBMECT MS (coiinainuavmdoommuy m aimfy byr Mockasmabso

__asureent
_ _ _ _ es Irnpvment methods

the report provides guidance to software development organizations that want to Improve their pro-

cesses. e fognzto efrac esrsaedfndt help an organization observe Its

-& m WM

UPCAU=~~=I W sm n SR nlsiid Unlimited Distribution

ZW6 NM OPESIOSIKEV~rVXAL TEUMONDNUNNIER Oaiefm cod0a) MOg. ESYMO
Thomais R. MI1ei U Col, UA 42 6-61ECES(E

DDFOM I ArM3ANZ. o N7 IS OBSO UNhEUDMINLUSINH)
S§U~flfCLAS3~CWW UKF

�papm.� 19

